Radiation Hardness Study on Fused Silica

Matthias Hoek
University of Glasgow

on behalf of the
PANDA Cherenkov Group

6th International Workshop on Ring Imaging Cherenkov Counters (RICH2007)
Trieste
Details on PANDA DIRC detectors

- K. Föh, 'The DIRC projects of the PANDA experiment at FAIR'
- P. Schönmeier, 'The Endcap DIRC of the PANDA experiment'
- C. Schwarz, 'The Barrel DIRC of the PANDA experiment'
Irradiation at KVI

- Proton beam (150MeV)
 - Average stopping power in SiO$_2$ (SRIM) 4.7MeV/(g/cm2)

- Beam size determination
 - LANEX scintillating screen + CCD
 - FWHM ~4mm

- Ionisation chamber
 - Beam current between 0.5 and 100nA
 - Max dose of 10Mrad in app 6 min
Samples

- 3 fused silica samples
 - Corning 7980
 - Schott Lithosil Q0
 - Heraeus Suprasil 1
- Estimated dose ~ 100krad
 - Planned dose 10krad, 100krad, 1Mrad and 10Mrad
 - Delivered dose sys 20% higher
Transmission Measurement

- Cary 300 double beam Spectrophotometer
 - Wavelength between 200 and 800nm
 - Beam spot 2x8mm
 - Precision better than 10^{-3}
 - Wavelength accuracy better than 0.2nm

- Each sample measured before irradiation at 4 spots

Measurements performed by E. Bennet & E. Cowie
Finding Radiation Spots

- Measurements 4 weeks after irradiation
 - Samples stored in light-tight box
- Two scans across sample
 - 2mm steps (determined by beam spot size)
- 10 krad spot not visible due to beam halo
- Remaining spots clearly visible
- Use to adapt sample positioning in spectrophotometer
Sensitivity

- Normalised difference
 \[\Delta I = \frac{I_{\text{ref}} - I_{\text{sample}}}{I_{\text{ref}}} \]

- Compensate for Fresnel loss

- Error sources and contributions
 - Sample positioning \(~ 0.1\%\)
 - Sample inhomogeneity \(< 0.3\%\)

- Sensitivity better than 1%
Example Analysis of LiF

- Only 1 and 10 Mrad spot visible
- Transmission measurement reveals two lower dose spots
Fused Silica – Corning 7980

- Sample size 80x80x20mm³
 - Irradiation spots separated by 40mm
- First and last measurement in a scan influenced by edge effects
- No irradiation spots detected
Fused Silica – Schott Lithosil

- Sample size 50x50x15mm³
 - Irradiation spots separated by 25mm
- This sample exhibits most homogeneous result of all fused silica samples
- Small deviations around 200nm probably due to cleaning
Fused Silica – Heraeus Suprasil 1

- BaBar reported significant transmission loss between 200–300nm for Suprasil Standard (NIM A515(2003) 680)
- Different sample geometry
 - BaBar: 20cm
 - This work: 2cm
 - Expect 5% deviation at 200nm
- No significant damage observed for Suprasil 1
Surface Study

- Zygo GPI XP/D interferometer
 - He-Ne laser at 632.8nm
 - $\lambda/300$ (2σ) resolution
- Check for surface dilatation
 - observed for silicate crown glasses under proton irradiation (> 1Mrad)

➔ No significant surface change observed
 ➢ Corning 7980 sample shown
Conclusions

- 3 fused silica types irradiated with 150MeV proton beam
 - 3 established dose levels: 100krad, 1Mrad and 10Mrad
 - Irradiation spots clearly visible in crown glass and LiF
- Transmission behaviour between 200 and 800nm monitored
 - No significant radiation damage observed in any fused silica sample
 - Sensitivity better than 1.0%
- No surface dilatation observed
- Further activities
 - Neutron damage